Behavioral task
behavioral1
Sample
2404.19756v2-compressed.pdf
Resource
win10-20240404-en
General
-
Target
2404.19756v2-compressed.pdf
-
Size
1.4MB
-
MD5
803b41da4bc7a86c964b5745c605917d
-
SHA1
6e6b723101926febaa73370dfa1708eb1fb5c731
-
SHA256
8381fda4136d229921a2af6cc1e6d1db9cd6df7840e0bf7bc0e5b9462eb2f6f5
-
SHA512
1730b162fff392f4335afe9e77da784b154c3dc21953161de78795fd906b9342fe6839fbc5ba933917ad51cc18d5b808512f30af2e687fb867148072f6061904
-
SSDEEP
24576:t8Bxz5f/LG016iigSHhBlcKpMmtpn5qcutZLtyA2TGF41:0xxC+xWhBl9hstyAAGy1
Malware Config
Signatures
Files
-
2404.19756v2-compressed.pdf.pdf
Password: hvgd
-
http://Afastneuralmodelforsymbolicregressionatscale.ar
-
http://GeorgMartiusandChristophHLampert.Extrapolationandlearningequations.ar
-
http://MilesCranmer.Interpretablemachinelearningforsciencewithpysrandsymbolicregression.jl.ar
-
http://Ming-JunLaiandZhaimingShen.Thekolmogorovsuperpositiontheoremcanbreakthecurseofdimensionalitywhenapproximatinghighdimensionalfunctions.ar
-
http://UtkarshSharmaandJaredKaplan.Aneuralscalinglawfromthedimensionofthedatamani-fold.ar
-
http://andAn-imaAnandkumar.Fouriercontinuationforexactderivativecomputationinphysics-informedneuraloperators.ar
-
http://andAnimaAnandkumar.Fourierneuraloperatorforparametricpartialdiffer-entialequations.ar
-
http://andDarioAmodei.Scalinglawsforneurallanguagemodels.ar
-
http://andJeffGore.Aresourcemodelforneuralscalinglaw.ar
-
http://andLeeSharkey.Sparseautoencodershighlyinterpretablefeaturesinlanguagemodels.ar
-
http://andUtkarshSharma.Explainingneuralscalinglaws.ar
-
http://empirically.ar
-
http://etal.In-contextlearningandinductionheads.ar
-
http://etal.Scalinglawsforautoregressivegenerativemodeling.ar
-
http://etal.Toymodelsofsuperposition.ar
-
http://github.com/trevorstephens/gplearn.Accessed:2024-04-19.37
-
http://jmodel.auto
-
http://mit.eduPreprint.Underreview.ar
-
http://trainingtimescalesfavorablywithgridsizeG.work
-
http://transformer-circuits.pub/2022/solu/index.html.[67]MohitGoyal,RajanGoyal,andBrejeshLall.Learningactivationfunctions:Anewparadigmforunderstandingneuralnetworks.arXivpreprintarXiv:1906.09529,2019.[68]PrajitRamachandran,BarretZoph,andQuocVLe.Searchingforactivationfunctions.arXivpreprintarXiv:1710.05941,2017.[69]ShijunZhang,ZuoweiShen,andHaizhaoYang.Neuralnetworkarchitecturebeyondwidthanddepth.AdvancesinNeuralInformationProcessingSystems,35:5669
-
https://github.com/KindXiaoming/pykan
-
https://github.com/KindXiaoming/pykanandcanalsobeinstalledviapipinstallpykan.2Kolmogorov
-
https://github.com/trevorstephens/gplearn
- Show all
-